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Abstract
In this paper, we describe the Mean Value Theorem (MVT) and Cauchy Mean Value

Theorem (CMVT) when considering an Rn−1 dimensional hyperplane intersects an Rn−1
dimensional smooth surface in Rn. We demonstrate how we derive the the proofs of MVT
and CMVT by applying techniques described in [4]. We further discuss how the theorems
can be extended by replacing the hyperplane with another smooth surface. Next, we link
MVT to problems of finding the extreme values for a smooth function subject to several
constraints. We use technological tools to show how we can obtain the solutions that are
guaranteed by our theories.

1 Introduction

Throughout this paper, we assume the Rolle’s theorem on a function f, that is differentiable on
(a, b) and continuous on [a, b].We recall from [4] that if we consider the parametric curve r(t) =
[g(t), f(t)] and the line segment connecting the points P = (g(a), f(a)) and Q = (g(b), f(b))
intersects r(t), then there exists a t ∈ (a, b) such that the slope of the secant line PQ is the
same as that of tangent line at a point of r(t). This is exactly what the Cauchy Mean Value
Theorem states below:
Suppose the function f : [a, b] → R and g : [a, b] → R are continuous and that their

restrictions to (a, b) are differentiable. Moreover, assume that g′(t) 6= 0 for all t in (a, b). Then
there is a point t in (a, b) at which

f(b)− f(a)

g(b)− g(a)
=
f ′(t)

g′(t).

Moreover, we note that the proof in [4] suggests that if we consider the line equation
connecting PQ as

y(t) = m · x(t) + b =

(
f(b)− f(a)

g(b)− g(a)

)
· g(t) + b,
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where b is the y−intercept of the line PQ, and consider the new parametric curve

r∗(t) = [g(t), f(t)− y(t)]

=

[
g(t), f(t)−

((
f(b)− f(a)

g(b)− g(a)

)
· g(t) + b

)]
,

the result of CMVT follows immediately by applying the Rolle Theorem on r∗(t). In many
textbooks, for example ([1], page 368) suggests that we may think of MVT in higher dimension
as a local behavior involving the directional derivative at one point in a given direction. More
specifically, we have the following:
Let U be an open subset of Rn and suppose the function f : U → R is continuously

differentiable. If the segment joining the points x and x+ h lies in U, then there is a number
θ ∈ (0, 1) such that

f(x+ h)− f(x) = (∇f(x+θh),h) .

In this paper, we will proceed the Mean Value Theorem in a different direction. If the surface
is given explicitly as f(x, y, z) = 0, then the normal vector at a point (x, y, z) on the surface
is given by the gradient vector ∇f(x, y, z). If a surface S is given explicitly as z = f(x, y),
then we write F (x, y, z) = f(x, y) − z and we consider the surface z = f(x, y) as the level
surface of F (x, y, z) = 0. We can also describe a surface S in R3 in parametric form, as a
vector-valued function of two parameters w(u, v) = [x(u, v), y(u, v), z(u, v)]. Throughout this
paper, a parametric surface is assumed to be orientable. If the normal vector exists and wu×wv
is not 0, then the surface S is called smooth. (There are no sharp ’corners’). In such case, the
tangent plane to S at a point exists. In Theorems 1 and 2, we describe the Rolle’s Theorems in
R3. For Theorem 3 and Corollary 4, we describe the Mean Value Theorem in R3. In Section 3,
we replace the intersecting plane P (with the given surface) in MVT by another smooth surface
and obtain a similar result.
Analogous to a tangent plane in R3, for n > 3, the hyperplane is a linear equation consists

of a set of points x in Rn−1 satisfying

−→n · (−→x −−→x0),

where x0 is a point on the hyperplane and
−→n is a given direction, which is the normal direction

to the hyperplane. The method of finding the appropriate tangent planes in R3 can be extended
to finding appropriate Rn−1 hyperplane in Rn regardless if a surface is given in implicit form
of f(x1, x2, ..., xn) = 0 or in parametric form of w(u1, u2, ...., un−1) (see [3]). The Theorem 5
generalizes the MVT in Rn. The Theorem 6 links the generalized MVT with problems related
to finding the extremum with several constraints. However, for demonstration purpose, we shall
focus most cases in R3 in this paper unless otherwise is stated. We use the following notations:
For a set A ⊂ Rn, Ao denotes the interior of the set A, and A is the closure of the set A.

2 Mean Value Theorem in Higher Dimensions

The next two theorems describe versions of Rolle’s Theorems in R3, one in function form, and
the other is in parametric form.
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Theorem 1 Let f be a bounded function defined on R2. We assume a horizontal plane P of
z = k, where k is a constant, intersects the surface z = f(x, y) in union of finitely many space
curves Ci, i = 1, 2, ...n, and the xy−projections of the intersection is a union of finitely region
Di, i = 1, 2, ...n. If f is differentiable over ∪ni=1 (Di)

o and continuous on ∪ni=1Di, then there
exists a point (x0, y0) in ∪ni=1 (Di)

o such that f has a horizontal plane at (x0, y0, f(x0, y0)).

Proof. Let the horizontal plane P intersect z = f(x, y) at the surface z = f(x, y) in union of
finitely many space curves Ci, i = 1, 2, ...n, and the xy−projection of P∪ (∪ni=1Ci) is union of
finitely region Di, i = 1, 2, ...n.We proceed to show that either f is constant in ∪ni=1Di, in which
case, the tangent plane is horizontal at every point on ∪ni=1Di, or f has a relative extremum
at a point (x0, y0) in (∪ni=1Di)

o , in which case f has a horizontal plane at (x0, y0, f(x0, y0)).
First we note that f is continuous and bounded on ∪ni=1Di, it assumes its maximum value M
and minimum value m somewhere on ∪ni=1Di by Extremum Value Theorem. If M = m,then
f is constant on ∪ni=1Di, and the tangent plane is horizontal at every point on ∪ni=1Di. On the
other hand, if k = M or k = m, we are done. Suppose M 6= m 6= k, since f(x, y) = k for all
(x, y) on ∂ (∪ni=1Di) , we know at least f(x, y) 6= M or f(x, y) 6= m for some (x, y) ∈ (∪ni=1Di)

o .
Suppose M > f(x, y) = k, where (x, y) ∈ ∂ (∪ni=1Di) . There exists an (x0, y0) ∈ (∪ni=1Di)

o

such that f(x0, y0) = M and thus f has a relative maximum at (x0, y0), and hence f has a
horizontal tangent plane at (x0, y0). Similar argument can be done for m < f(x, y) = k, where
(x, y) ∈ ∂ (∪ni=1Di) .

Theorem 2 Let w(u, v) be a bounded parametric surface in R3, and P be a horizontal plane
which intersects w(u, v) in union of finitely many smooth space curves Ci, i = 1, 2, ...n, and
the xy−projections of the intersection is a union of finitely region Di, i = 1, 2, ...n. If w(u, v)
is differentiable over ∪ni=1 (Di)

o and continuous on ∪ni=1Di for all (u, v) ∈ ∪ni=1Di. Then there
exists (u0, v0) ∈ ∪ni=1 (Di)

o such that the tangent plane at (u0, v0, w(u0, v0)) is parallel to the
horizontal plane P.

Proof. For simplicity, we assume the horizontal plane P intersects the bounded surface w(u, v)
at a smooth space curve C, and the xy−projection of the intersection enclosed a region D.
If there is a k ∈ R such that z = k intersects the surface w(u, v) as a function, then we
apply the Theorem 1, and there exists (u0, v0) ∈ ∪ni=1 (Di)

o such that the tangent plane at
(u0, v0, w(u0, v0)) is parallel to the horizontal plane P. Suppose there is no such k ∈ R such that
the bounded surface becomes a function, then the surface w(u, v) must be unbounded, which
is a contraction.
The following theorem can be viewed as the Cauchy Mean Value Theorem (CMVT) for a

parametric surface in R3.

Theorem 3 Let w(u, v) be a bounded parametric surface in R3, and P be the plane of the
form ax + by + cz = d, which intersects w(u, v) in union of finitely many space curves Ci, i =
1, 2, ...n, and the xy−projections of the intersection enclosed union of finitely many region
Di, i = 1, 2, ...n. If w(u, v) is differentiable over ∪ni=1 (Di)

o and continuous on ∪ni=1Di for all
(u, v) ∈ ∪ni=1Di. Then there exists (u0, v0) ∈ ∪ni=1 (Di)

o and k ∈ R such that the tangent plane at

3
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(u0, v0, w(u0, v0)) is parallel to the plane P, and the followings are satisfied at the point (u0, v0):

zu =
−axu − byu

c
,

zv =
−axv − byv

c
,

xuyv − yuxv = k.

Proof. For simplicity, we show that the surface w(u, v) intersects the plane, ax+ by + cz = d,
at a smooth space curve C, and we call the xy−projection of the intersection to be the region
D. We consider the surface w∗(u, v) = [x(u, v), y(u, v), z(u, v)− d− ax(u, v)− by(u, v)

c
] for all

(u, v) ∈ D. We note that the horizontal plane z = 0 intersects w∗(u, v) for all (u, v) ∈ D. It
follows from the Theorem 2 that there exists (u0, v0) ∈ ∪ni=1 (Di)

o such that the tangent plane
at (u0, v0, w

∗(u0, v0)) is parallel to z = 0. In other words, w∗u×w∗v is parallel to (0, 0, k) for some
k ∈ R.We write w∗u × w∗v = [w1, w2, w3] and observe the followings:

w1 = yu

(
zv −

−axv − byv
c

)
− yv

(
zu −

−axu − byu
c

)
,

w2 = xv

(
zu −

−axu − byu
c

)
− xu

(
zv −

−axv − byv
c

)
,

w3 = xuyv − yuxv.

Since w1 = w2 = 0, and w3 = k for some (u0, v0) ∈ D and some k ∈ R, we have

zu =
−axu − byu

c
,

zv =
−axv − byv

c
,

xuyv − yuxv = k.

Corollary 4 Let f(x, y) be differentiable over an open region D and continuous over D. We
assume a non-vertical plane P of ax + by + cz = d intersects the surface z = f(x, y),then we
can find a point X0 on z = f(x, y) where the tangent plane at X0 is parallel to the plane P.
In other words, there exists k ∈ R such that the normal vector of the tangent plane at X0 is
(−a

c
,− b

c
, k).

Proof. We write w(u, v) = [u, v, f(u, v)], the result follows directly from Theorem 3.

3 Extensions of MVT and Optimization Problems

We consider the smooth surface g(x, y, z) = 0 and a plane P satisfying the conditions stated in
the Theorem 3. To find the desired point X0 = (x0, y0, z0) on g(x, y, z) = 0 so that the tangent

4
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plane at X0 parallel to P, ax + by + cz = d, is ‘almost’ equivalent to solving the following
statement:

Find the extreme values of f(x, y, z) = z− d− ax− by
c

subject to a constraint of the form

g(x, y, z) = 0. The differences can be seen in the following Theorems 5 and 6
We note that the necessary condition for finding the extreme value of l such that the surface

f(x, y, z) = l subject to the condition of g(x, y, z) = 0 is that ∇f(x, y, z) has to be a multiple of

∇g(x, y, z) at the point of tangency. It is natural one can replace f(x, y, z) = z− d− ax− by
c

by a more general smooth function. In the terminology of MVT, we may state that: Given two
differentiable surfaces, f(x, y, z) = 0 and g(x, y, z) = 0. If the tangent plane for g(x, y, z) = 0
and f(x, y, z) = k is the same at (x0, y0, z0) for some k ∈ R. Then there is a nonzero λ such
that ∇f(x0, y0, z0) = ∇λg(x0, y0, z0).We certainly can extend this observation to the following:

Theorem 5 We are given differentiable surfaces f(x1, x2, ....., xn) = 0,and gi(x1, x2, ....., xn) =
0, i = 1, 2...p. Then (x∗1, x

∗
2, ....., x

∗
n) is a point on the surface of gi(x1, x2, ....., xn) = 0, i =

1, 2, ...p, such that the normal vector for the hyperplane of f(x1, x2, ....., xn) = k at (x∗1, x
∗
2, ....., x

∗
n),

for some k ∈ R is a linear combination from a linearly independent set of vectors
{∇gi(x∗1, x∗2, ....., x∗n)}pi=1 if and only if there are nonzero λi, i = 1, 2, ...p such that
∇f(x∗1, x

∗
2, ....., x

∗
n) =

∑p
i=1 λi∇gi(x∗1, x∗2, ....., x∗n).

Alternatively, if we interpret the preceding problem as finding the extreme values of
f(x1, x2, ....., xn) subject to the p−constraints gi(x1, x2, ....., xn) = 0, i = 1, 2...p. Then we may
apply Lagrange Multipliers Method to solve the extreme value problem with several constraints.
We state the following without proof, which can be found in many regular textbooks.

Theorem 6 We assume that f, gi are continuously differentiable: Rn → R, with i = 1, 2, ...p.
Suppose that we want to maximize or minimize a function of n variables f(x) = f(x1, x2, ..., xn)
for x = (x1, x2, ..., xn) subject to p constraints g1(x) = c1, g2(x) = c2, ..., and gp(x) = cp.
The necessary condition of finding the relative maximum or minimum of f(x) subject to the
constraints g1(x) = c1, g2(x) = c2, ..., and gp(x) = cp that is not on the boundary of the region
where f(x) and gi(x) are defined can be found by solving the system

∂

∂xi

(
f(x) +

p∑
j=1

λjgj(x)

)
= 0, 1 ≤ i ≤ n, (1)

gj(x) = cj, 1 ≤ j ≤ p. (2)

We write ∇f(x) =

(
∂

∂x1
f(x),

∂

∂x2
f(x), ...,

∂

∂xn
f(x)

)
. If x = x0 is an extremum for above

system, then

∇f(x0) =

p∑
j=1

λj∇gj(x0). (3)

5
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3.1 Examples

In this subsection, we demonstrate how Theorems 5 and 6 can be adopted to find the desired
solutions computationally through the help of a CAS such as [6] or [7].

Example 7 Consider the ellipsoid w(u, v) = [x(u, v), y(u, v), z(u, v)] = [cosu sin v, sinu sin v, 2 cos v],
where u ∈ [0, 2π] and v ∈ [0, π], and the plane P : 4x + 3y − z = 0. Find a point X0 on the
ellipsoid so that the tangent plane at X0 is parallel to P.

Method 1. (Lagrange) We may rewrite the parametric surface in rectangular form x2 +
y2 + z2

4
= 1, and the problem can be stated as the following: Find the extreme values of

f(x, y, z) = z− 4x− 3y subject to a constraint of x2 + y2 +
z2

4
= 1.

We set L(x, y, z, λ) = z− 4x− 3y− λ(1− x2− y2− z2

4
), and set ∇L = 0 to solve for x, y, z,

and λ.With the help of CAS [6], we get

λ = ±
√

29

2
, x = ∓ 4√

29
, y = ∓ 3√

29
, and z = ± 4√

29
.

We choose

{λ = 2.692582404, x = −.7427813528, y = −.5570860147, and z = .7427813528}

for demonstration and leave the other as an exercise. Thus, we get
X0 = [−0.7427813528,−0.5570860147, 0.7427813528].
Method 2. (Apply the Theorem 3) We follow the proof mentioned in Theorem 3 by

considering the surface of

w∗(u, v) = [[x(u, v), y(u, v), z(u, v)− 4x(u, v)− 3y(u, v)]

= [cosu sin v, sinu sin v, 2 cos v − 4 cosu sin v − 3 sinu sin v.

We find w∗u = [− sinu sin v, cosu sin v, 4 sinu sin v − 3 cosu sin v],
and w∗v = [cosu cos v, sinu cos v,−2 sin v− 4 cosu cos v− 3 sinu cos v]. Therefore, if we write

w∗u × w∗v = [a, b, c], we obtain

a = cosu sin v (−2 sin v − 4 cosu cos v − 3 sinu cos v)

− (4 sinu sin v − 3 cosu sin v) sinu cos v

= 4 + 2 tan v · sinu,
b = (4 sinu sin v − 3 cosu sin v) cosu cos v+

sinu sin v (−2 sin v − 4 cosu cos v − 3 sinu cos v)

= 3 + 2 tan v · cosu, and

c = − sin2 u sin v cos v − cos2 u sin v cos v

= − sin v cos v.

6
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By setting a = 0, b = 0 and c = k, we solve u, v and k, and get the followings:

{k = 0., u = u, v = 0.},
{k = .3448275862, u = .6435011088, v = −1.190289950} and
{k = −.3448275862, u = −2.498091545, v = 1.190289950}.

We substitute {u = −2.498091545, v = 1.190289950} into w∗(u, v) to obtain the point X∗0 =
[−.7427813528,−.5570860146, 5.385164807]. (We note that {k = 0., u = u, v = 0.} is not
suitable and leave the other solution as an exercise). We plot the surface w∗(u, v) and z =
5.385164807 in Figure 1. As expected, the surface w∗(u, v) has a horizontal tangent at X∗0 .

Figure 1. Rotated surface and the horizontal tangent plane

In addition, we note that the respective x and y values for X∗0 and X0 (from Method 1)
are identical. We show in Figure 2 below that the plane P1 of 4(x + .7427813528) + 3(y +
.5570860146) − (z − .7427813522) = 0 is the tangent plane at X∗0 and is parallel to the given
plane P of 4x+ 3y − z = 0.

Figure 2. Surface with slanted plane and tangent plane

7
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Discussions: For Example 7, we may generalize the problem as finding the extreme values

of f(x, y, z) = z− mx− ly subject to a constraint of x2+y2+
z2

n
= 1.We define L(x, y, z, λ) =

z−mx− ly−λ
(
x2 + y2 +

z2

n
− 1

)
, and set ∇L = 0.We demonstrate solutions with the help

of CAS [6] as follows::

1. For Method 1 we obtain

λ = ±
√
m2 + l2 + n

2
, x = −m

2λ
, y = − l

2λ
, z =

n

2λ
and f(x, y, z) = 2λ.

We have two solutions for this problem, namely, B =
[

−m√
m2+l2+n

, −l√
m2+l2+n

, n√
m2+l2+n

]
and

C =
[

m√
m2+l2+n

, l√
m2+l2+n

, −n√
m2+l2+n

]
.

2. For Method 2, by applying the Theorem 3, by writing w∗u × w∗v = [a, b, c], we obtain

a = m+ tan v · sinu ·
√
n,

b = l + tan v · cosu ·
√
n, and

c = − sin v cos v.

By setting (a, b, c) = (0, 0, k),and with some algebraic simplifications and note that u ∈
[0, 2π] and v ∈ [0, π], we obtain{

u = arctan
l

m
, v = ± arctan

√
m2 + l2

n
and k = ±

√
n (m2 + l2)

m2 + l2 + n

}
.

If we substitute
{
u = arctan l

m
, v = arctan

√
m2+l2

n

}
into w∗(u, v), we obtain the point

B′ = [x(u, v), y(u, v), z(u, v) − mx(u, v) − ly(u, v)].

If we substitute
{
u = arctan l

m
, v = − arctan

√
m2+l2

n

}
, we obtain the second solution

at the point C ′ = [x(u, v), y(u, v), z(u, v)−mx(u, v)− ly(u, v)].

3. For the video demonstration on this general case, please see [8].

In the next example, we replace the linear function f(x, y, z) by a smooth function.

Example 8 We consider two differentiable surfaces f(x, y, z) = z− 4x2− 3y2 and g(x, y, z) =
1 − x2 − y2 − z2

4
. Then find a point X = (x0, y0, z0) on the surface of g(x, y, z) = 0 such that

the tangent plane of g(x, y, z) = 0 at X is the same as the tangent plane of f(x, y, z) = k at X
for some k ∈ R.

8
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We consider L(x, y, z, λ) = f(x, y, z) +λg(x, y, z) and set ∇L = 0 to solve for x, y, z, and λ.
With the help of Maple (see [7]), we obtain

{λ = −4., x = .9682458365, y = 0., z = −.5000000000},
{λ = −3., x = 0., y = .9428090414, z = −.6666666667},
{λ = 1., x = 0., y = 0., z = 2.},
{λ = −1., x = 0., y = 0., z = −2.}.

We consider the following two cases and leave the others to readers to explore:
Case 1. {λ = −4., x = .9682458365, y = 0., z = −.5000000000}

We note that f(.9682458365, 0,−0.5) = −4.25, we plot the graphs of f(x, y, z) = −4.25 and
g(x, y, z) = 0 in Figure 3(a) with [7], it is clear that these two surfaces are tangent to each
other at the desired point of x = .9682458365, y = 0, and z = −.5000000000.

Figure 3(a). When replacing the hyperplane with a surface in MVT-Case 1

Case 2. {λ = 1, x = 0, y = 0., z = 2} We note that f(0, 0, 2) = 2, we plot the graphs of
f(x, y, z) = 2 and g(x, y, z) = 0 in Figure 3(b) with [7], it is clear that these two surfaces are

9
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tangent to each other at the desired point of x = 0, y = 0, and z = 2.

Figure 3(b). When replacing the hyperplane with a surface in MVT-Case 2

Exercise. Use the Method 2 mentioned in Example 7 to obtain the same results as described
above.

Example 9 We consider differentiable surfaces f(x, y, z) = (x+ 1)2+y2+(z−3)2−1, g1(x, y, z) =
1
9
x2+ y2+ z2−1 = 0, g2(x, y, z) = 1

4
x2+ 1

4
y2+ z2−1 = 0, and g3(x, y, z) = x2+ y2+ z2−2 = 0.

If possible, find a point (x0, y0, z0) on the surfaces of gi(x, y, z) = 0, i = 1, 2, and 3, such that
the normal vector for the tangent plane of f(x, y, z) = k at (x0, y0, z0), for some k ∈ R is a
linear combinations of ∇gi(x0, y0, z0), where i = 1, 2,and 3.

We first note that if such solution exists, the surface f(x, y, z) will touch exactly at the
point where three surfaces gi(x, y, z) = 0 intersect, i = 1, 2, and 3. We consider

L(x, y, z, λ1, λ2, λ3) = f(x, y, z) + λ1g1(x, y, z) + λ2g2(x, y, z) + λ3g3(x, y, z),

and set ∇L = 0 to solve for x, y, z, λ1, λ2, and λ3. This amounts to solving for the following two
parts:
Part 1. Solve x, y and z from gi(x, y, z) = 0, for i = 1, 2, and 3. We get the following eight

solutions: {
x = ±3

√
2

4
, y = ±

√
5

24
, z = ±

√
2

3

}
.

Part 2. Solve for λ1, λ2, and λ3 in terms of x, y and z, with the help of [6] or [7], we obtain
the following: {

λ1 =
9

8x
, λ2 =

4

z
, λ3 = −8xz + 8x+ 9z

8xz

}
.

10
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We use the following two cases for demonstrations and leave the rest to readers to explore
analogously.

Case 1.
{
x0 = −3

√
2
4
, y0 =

√
5
24
, z0 = −

√
2
3
, λ1 = −1.060660172, λ2 = −4.898979486, λ3 = 1.2854050

}
We note that f(x, y, z) = f(x0, y0, z0) = 13.77765914 is tangent to all of the surfaces gi(x, y, z) =
0, i = 1, 2, 3, at (x0, y0, z0). Furthermore, it follows from Theorem 5 that ∇f(x0, y0, z0) can
be written as a linear combinations of the ∇gi(x, y, z) = 0, i = 1, 2, 3. We demonstrate this
by using the following Figures 4(a) and 4(b) with the help of [6]. The g1(x, y, z) = 0 is
shown in yellow, g2(x, y, z) = 0 is shown in blue, g3(x, y, z) = 0 is shown in green, and
f(x, y, z) = f(x0, y0, z0) = 13.77765914 is shown in red.

Figure 4(a). Case 1 of MVT with intersecting surfaces.

Figure 4(b). Case 1 of MVT with respective normal vectors

Case 2.
{
x0 = 3

√
2
4
, y0 =

√
5
24
, z0 =

√
2
3
, λ1 = 1.060660172, λ2 = 4.898979486, λ3 = −3.285405043

}
We note that f(x, y, z) = f(x0, y0, z0) = 8.222340858 is tangent to all of the surfaces gi(x, y, z) =
0, i = 1, 2, 3, at (x0, y0, z0). It follows from Theorem 5 that∇f(x0, y0, z0) can be written as a lin-
ear combinations of the ∇gi(x, y, z) = 0, i = 1, 2, 3.We demonstrate this by using the following
Figures 5(a) and 5(b) with the help of [6]. The g1(x, y, z) = 0 is shown in yellow, g2(x, y, z) = 0
is shown in blue, g3(x, y, z) = 0 is shown in green, and f(x, y, z) = f(x0, y0, z0) = 8.222340858
is shown in red.

Figure 5(a). Case 2 of MVT with intersecting surfaces.

Figure 5(b). Case 2 of MVT with respective normal vectors

Remarks:

11
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1. As we have mentioned if such a solution (x0, y0, z0) exists, the surface f(x, y, z) = f(x0, y0, z0)
is tangent to all of the surfaces gi(x, y, z) = 0, i = 1, 2, 3, at (x0, y0, z0). Furthermore, the
∇f(x0, y0, z0) can be written as a linear combinations of the ∇gi(x, y, z) = 0, i = 1, 2, 3.

2. We see from Example 9 that since there are eight intersections for the surfaces of gi(x, y, z) =
0, i = 1, 2, 3, all gradient vectors at any particular intersection (x0, y0, z0), ∇g1(x0, y0, z0),
∇g2(x0, y0, z0), and ∇g3(x0, y0, z0) form a linearly independent set in R3. Furthermore,
∇f(x0, y0, z0) can be written as linear combinations of the gradient vectors {∇gi(x0, y0, z0)}3i=1 ;
of course, we assume all gradient vectors here are not zero or parallel. We demonstrate
this by using Figure 5(c) below:

Figure 5(c). Gradient vectors are linearly independent

Corollary 10 We assume that f, gi are continuously differentiable: R3 → R, with i = 1, 2, and
3. Suppose f(x) has a extreme values subject to three constraints g1(x) = c1, g2(x) = c2,and
g3(x) = c3, where x = (x1, x2, x3). Furthermore, these three constraints, g1(x) = c1, g2(x) =
c2,and g3(x) = c3, intersect at a space curve C in R3.Then ∇f(x∗) and {∇gj(x∗)}3i=1 are
coplanar for all x∗ ∈ C.

Proof. Suppose f has an extreme value at x∗ ∈ C, we note that ∇f(x∗) is orthogonal to
C at x∗. Since {∇gj(x)}3i=1 is orthogonal to {gj(x) = ci}3i=1 respectively, we see {∇gj(x∗)}

3
i=1

is orthogonal to C. This implies that ∇f(x∗) is a linear combination of {∇gj(x)}3i=1 , since
dimension of R3 is 3, we see that {∇gj(x∗)}3i=1 are coplanar and thus ∇f(x∗) and {∇gj(x∗)}3i=1
are coplanar for all x∗ ∈ C.
In the next example, we shall see how Corollary10 works.

Example 11 We consider the differentiable function f(x, y, z) = (x− x0)2 + (y − y0)2 + (z −
z0)

2, which (x0, y0, z0) is denoted by P.Next, we conside rthe ellipsoid g1(x, y, z) = x2

a2
+ y2

a2
+

z2

b2
− 1 = 0, and we denote O to be the origin and a = AO, b = BO. Before we construct the

surfaces g2(x, y, z) = 0 and g3(x, y, z) = 0, we construct the horizontal circle L : x2 + y2 = r2

with radius r =
√
3a
2
and center C = (0, 0, b

2
). Now, we construct g2(x, y, z) = 0 to be the torus

with its horizontal cross section to be the circle L and denote the center of such torus ring as
D, which is shown in Figure 5(d) below, with minor radius r and major radius CD. Finally, we
construct the cone g3(x, y, z) = (x− x1t)2 + (y− y1t)2 + (z− z1t)2 = r2(1− t)2, where t = 2z−b

2z1−b
and (x1, y1, z1) is the vertex E of the cone, which we show in Figure 5(d). We want to find a

12
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point X(x∗, y∗, z∗) on all surfaces of gi(x, y, z) = 0, i = 1, 2, and 3 such that the normal vector
for the tangent plane of f(x, y, z) = k2 at X(x∗, y∗, z∗), for some k ∈ R, is a linear combination
of ∇gi(x, y, z), where i = 1, 2 and 3.

We note the followings:

∇g1(x∗, y∗, z∗) = (x∗, y∗,
a2

b
),

∇g1(x∗, y∗, z∗) = (x∗, y∗, 0) and

∇g1(x∗, y∗, z∗) =

(
x∗, y∗,

r2 − x∗x1 − y∗y1
z1 − 0.5b

)
,

where the normal vector are being normalized such that their x component is x∗. We observe
all normal vectors are coplanar in this case and lie in a vertical plane Π which contains the
z−axis and the point X. Furthermore, we see ∇f(x∗, y∗, z∗) = 2(P −X), therefore, the surface
f(x, y, z) = k2 contains the point X if k = |P −X| . We discuss the following two possibilities:

1. Let P ∈ Π but P is not on the z− axis : The normal vectors ∇gi(x∗, y∗, z∗), i = 1, 2, and
3, and ∇f(x∗, y∗, z∗) belongs to the same plane and the normal vector for the tangent
plane of f(x, y, z) = k2 at X(x∗, y∗, z∗) with k = |P −X| is a linear combinations of
∇gi(x∗, y∗, z∗), i = 1, 2, and 3. There are two such points X belonging to the circle
L for arbitrary P.

2. Let P be on the z − axis, then P ∈ Π : The normal vectors ∇gi(x∗, y∗, z∗), i = 1, 2, and
3, and ∇f(x∗, y∗, z∗) belong to the same plane and the normal vector for the tangent
plane of f(x, y, z) = k2at X(x∗, y∗, z∗) with k = |P −X| is a linear combinations of
∇gi(x∗, y∗, z∗), i = 1, 2, and 3. For a video demonstration on this problem, we refer reader
to see [9].

Figure 5(d): The ellipsoid and the torus.

Figure 5(e): The ellipsoid, torus and the cone.

We now consider an application of finding two parallel tangent planes at two points of
two respective non-intersecting smooth surfaces. Given two non-intersecting smooth surfaces

13
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f(x, y, z) = 0 and g(x, y, z) = 0, where f and g are continuously differentiable functions in their
respective closed and bounded domains. Our task is find respective points on f(x, y, z) = 0 and
g(x, y, z) = 0 such that the tangent planes at these respective points are parallel to each other.
It follows from [5] that if such points exist for f(x, y, z) = 0 and g(x, y, z) = 0 respectively,
the distance between these two points possibly produces an extreme value between these two
points. It is clear that finding extreme value for the ‘square distance’is a nice application of
MVT in higher dimensions and Lagrange Multipliers.
We describe the extreme values for the square distance as follows: Let f(x, y, z) = 0 and

g(x, y, z) = 0 be two non-intersecting surfaces, and we want to find the relative extremum
squared distance between these two convex surfaces f(x, y, z) = 0 and g(x, y, z) = 0. If we
write x = (x1, x2, x3), y = (y1, y2, y3), it follows from [5] that we want to minimize or maximize
the squared distance |x− y|2, which is subject to both f(x) = 0 and g(y) = 0. If we write

L(x,y, λ1, λ2) = |x− y|2 + λ1f(x)+λ2g(y) (4)

or

L(x1, x2, x3, y1, y2, y3, λ1, λ2) = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2+
λ1f(x1, x2, x3) + λ2g(y1, y2, y3); (5)

Then it follows from the Lagrange Multipliers Method that the necessary condition to achieve
the critical distance is to set

∇L = 0, (6)

and solve x1, x2, x3, y1, y2, y3, λ1, and λ2. The next example reminds us that the Lagrange Multi-
pliers Method only provides a necessary but not a suffi cient condition for finding the extremum
value for the square distance function.

Example 12 We consider the ellipsoid S1 of the form F (x, y, z) = XTAX − r2 = 0, where

X =

 x
y
z

 , A =

 3 1 1
1 3 1
1 1 5

 , and r =
√

8. We see

XTAX − r2 = x (3x+ y + z) + y (x+ 3y + z) + z (x+ y + 5z)− 8 = 0.

We also consider the surface S2 of the form G(x, y, z) = 1
2

(
1
2

(x+ 4)2 + 1
2

(y + 5)2 + 1
2
z2 − 2

)2
+

2x+ 18 + 2y− z = 0. We want to find the shortest square distance between S1 and S2. In other
words, we want to find the minimum of |x− y|2 , where x ∈ S1 and y ∈ S2. It is easy to see
that we want

to minimize |x− y|2

subject to

x ∈ S1 and y ∈ S2.

If we set L(x,y, λ1, λ2) = |x− y|2 + λ1F (x) + λ2G(y), we need to set ∇L = 0 to solve for
x,y, λ1,and λ2.. With the help of Maple, we show the following two cases:

14
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Case 1. When x =

 .8185635772
1.258751546
−.5035606230

 ,y =

 −6.282838309
−7.789748993
0.4706522543

 , λ1 = −2.211667277 and

λ2. = −1.667226467. We see |x− y|2 = 133.2543615, we demonstrate the surfaces and the
vector connecting S1 and S2 in Figure 6:

Figure 6. Minimum squared distance 1

Case 2. When x =

 −.9938820385
−1.065237505
.6812516238

 ,y =

 −3.938343832
−4.134551597
1.859811273

, λ1 = −1.522033890 and

λ2. = 5.068309708. We see |x− y|2 = 19.47954710, we demonstrate the surfaces and the vector
connecting S1 and S2 in Figure 7. It can be shown that the squared distance in this case produce
the minimum value between two surfaces.

Figure 7. Minimum squared distance 2

The following Figures 8(a) and (b) created by [6] by give nice demonstrations how the respective
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points in S1 and S2 produce the minimum squared distance:

Figures 8(a) and 8(b) Minimum squared distance between S1 and S2

For a suffi cient and necessary condition of finding the minimal distance between two non-
convex surfaces, we refer readers to [2]. We refer readers to [5] for exploring more interesting
problems in finding the extreme values of the total square distances among multiple surfaces.
Exercise. Explore that the following respective points between S1 and S2 produce neither

maximum nor minimum square distances:

Case (i) x =

 −.8826421485
−1.210622771
0.3862052730

 ,y =

 −6.368158748
−7.732409496
0.1299051204

, λ1 = 1.579773400 and λ2. =

−1.251743854. We refer to the following Figures 9(a) and 9(b), created by [6] which show the
respective points in S1 and S2 produce neither maximum nor minimum squared distance.

Figures 9(a) and 9(b) Neither maximum nor minimum squared distance.

Case (ii) x =

 1.015161164
1.020326713
−.7363979552

 ,y =

 −4.052317116
−4.062875848
1.769633735

, λ1 = −1.522033890 and λ2. =

5.068309708.
Discussions: For Example 12, we may generalize the problem to find the minimum squared

distance between two disjoint surfaces determined by f(x, y, z) = z−mx2−ny2 and g(x, y, z) =
x2

a2
+ y2

b2
+ z2

c2
− 1 = 0. For detailed demonstration, we refer readers to the video clip [9].
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4 Conclusion

We have seen how we can extend the MVT and CMVT to higher dimensions, and interpret
them nicely when we have multiple surfaces. Furthermore, we make a connection between
MVT and CMVT with optimization problems with constraints. We give several examples to
demonstrate that not only we believe the existence of a solution but also implement CAS to
show how we can find desired solutions. We believe the contents in this paper is accessible
to undergraduate students who have studied Multi-variable Calculus and Linear Algebra. We
believe it is important to integrate the concepts between these two fields, which is essential
before students study more deeper concepts in Differential Geometry.
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